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ABSTRACT

We present three clustered protein sequence
databases, Uniclust90, Uniclust50, Uniclust30 and
three databases of multiple sequence alignments
(MSAs), Uniboost10, Uniboost20 and Uniboost30,
as a resource for protein sequence analysis, func-
tion prediction and sequence searches. The Uniclust
databases cluster UniProtKB sequences at the level
of 90%, 50% and 30% pairwise sequence identity.
Uniclust90 and Uniclust50 clusters showed better
consistency of functional annotation than those of
UniRef90 and UniRef50, owing to an optimised clus-
tering pipeline that runs with our MMseqs2 software
for fast and sensitive protein sequence searching
and clustering. Uniclust sequences are annotated
with matches to Pfam, SCOP domains, and proteins
in the PDB, using our HHblits homology detection
tool. Due to its high sensitivity, Uniclust contains 17%
more Pfam domain annotations than UniProt. Uni-
boost MSAs of three diversities are built by enriching
the Uniclust30 MSAs with local sequence matches
from MMseqs2 profile searches through Uniclust30.
All databases can be downloaded from the Uniclust
server at uniclust.mmseqs.com. Users can search
clusters by keywords and explore their MSAs, tax-
onomic representation, and annotations. Uniclust is
updated every two months with the new UniProt re-
lease.

INTRODUCTION

The number of protein sequences in public databases such
as UniProt (1) or GenBank (2) is growing fast, in part due
to various large-scale genomics projects (3—5). The rapid

growth makes it attractive for many applications to work
with representative subsets, in which the representatives
are computed by clustering similar sequences together and
choosing only a single representative per cluster. Apart from
saving computational resources, the more even coverage of
sequence space of such clustered databases can improve the
sensitivity of sequence similarity searches (6-8).

The popular UniProt Reference Clusters (UniRef) (9)
consist of three databases that are generated by cluster-
ing the UniProtKB sequences in three steps using the CD-
HIT software (10): UniRef100 combines identical UniPro-
tKB sequences and fragments with 100% sequence identity
into common entries. UniRef90 sequences are obtained by
clustering UniRef100 sequences together that have at least
90% sequence identity and 80% sequence length overlap,
and UniRef50 clusters together UniRef90 sequences with at
least 50% sequence identity and 80% sequence length over-
lap.

Here, we introduce the Uniclust sequence databases
which, like UniRef, are clustered, representative sets of
UniProtKB sequences at three different clustering lev-
els. But whereas UniRef relies on the CD-HIT software
for the clustering, we use our software suite MMseqs2
(github.com/soedinglab/mmseqs2, Steinegger & Soding, to
be published). The following characteristics make Uniclust
databases unique and useful: First, the sensitivity of MM-
seqs2 for distantly homologous sequences allows us to clus-
ter the UniProtKB down to 30% sequence identity. Second,
we have developed a cascaded clustering workflow within
MMseqs2 in order to produce sequence clusters that are
as compact and functionally homogeneous as possible. As
a result, Uniclust90 and Uniclust50 clusters show higher
functional consistency scores than UniRef90 and UniRef50
at similar clustering depths, respectively. Third, we provide
deep annotation of Uniclust sequences with Pfam (11) and
SCOP (12) domains, and matches to PDB sequences (13)
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using HH-suite, our remote homology detection software
suite. The sensitivity of HH-suite allows us to annotate 17%
more Pfam domains than UniProt, which uses InterPro
and HMMERS3 for these annotations. Fourth, we provide
the MSAs of all Uniclust clusters as well as the three Uni-
boost databases with MSAs of different diversity levels that
are obtained by enriching Uniclust30 clusters with local se-
quence matches.

MATERIALS AND METHODS

We developed an open-source bash pipeline (github.com/
soedinglab/uniclust-pipeline) to generate all data described
here: the Uniclust clusterings, cluster summary head-
ers, domain annotations for sequences, and the Uniboost
databases of multiple sequence alignments. We provide the
pipeline scripts as a supplementary archive file to avoid clut-
tering the descriptions here with command line options and
other details irrelevant for the understanding.

Uniclust clustering pipeline

The Uniclust clusters contain all sequences in the UniProt
knowledge base (UniProtKB), the union of the Swiss-Prot
and TrEMBL databases. Sequences longer than 14 000
amino acid residues are split into multiple individual en-
tries to limit memory usage and improve compatibility with
other tools. (This affects 352 sequences in the 2016_03 re-
lease.) Once a year we will cluster these sequences from
scratch as described in the following.

In order to cluster together sequences of >30% pairwise
sequence identity, we need high sensitivity, yet the enor-
mous number of pairwise comparisons (on the order of
(107)%) requires very high speed at the same time. We devel-
oped a cascaded clustering workflow in MMseqs (14) that
uses three clustering steps with progressively increasing sen-
sitivity and decreasing speed.

The first step consists of an extremely fast redundancy
filtering that can cluster sequences of identical length and
100% overlap (‘mmseqs clusthash’). It reduces each se-
quence to a five-letter alphabet, computes a 64 bit CRC32
hash value for the full-length sequences, and places se-
quences with identical hash code that satisfy the sequence
identity threshold into the same cluster. This step is run with
a threshold of 90% and reduces the 61 million sequences of
UniProtKB 2016_03 down to 40 million clusters in ~20 min
on a single 16-core node.

Similar to the UniRef100 clustering, we cluster fragments
of sequences together with their full-length sequences. We
add sequences to a cluster if they have at least 90% sequence
identity to the representative sequence and are also covered
by at least 95% of their length, without regard to the $E$-
value.

In the first cascaded clustering step, in which we gener-
ate the Uniclust90 sequence set, we use the simple greedy
clustering strategy of CD-HIT (10) that was already part of
MDMseqs. We assign a sequence to a cluster if it has at least
90% sequence identity with the representative sequence of
the cluster and a sequence length overlap of 90% of the
shorter of the two sequences. Similar to the UniRef100 clus-
tering, to cluster fragments of sequences together with their

Nucleic Acids Research, 2017, Vol. 45, Database issue D171

full-length sequences we also add sequences to a cluster if
they have at least 90% sequence identity to the representa-
tive sequence and are also covered by at least 95% of their
length, without regard to the E-value.

In the third step, we generate the Uniclust50 and Uni-
clust30 clustering both directly from the sequences in Uni-
clust90, using a 50% or 30% sequence identity threshold, re-
spectively, and a minimum sequence length overlap of 80%.
A high minimum overlap ensures that all proteins within
one cluster have the same or a very similar domain struc-
ture and is also an effective criterion to achieve functional
homogeneity (15). We avoided the cascaded clustering ap-
proach of generating Uniclust30 from Uniclust50 because
we found this resulted in slightly inferior clustering quality
to the direct approach.

In addition to the simple greedy clustering, we imple-
mented affinity propagation, depth-n single linkage clus-
tering, and the classic greedy set-cover algorithm in MM-
seqs2 and compared the clustering qualities. We found that
the cluster compactness for all algorithms could be further
improved by passing over all sequences after the clustering
and reassigning each to the cluster whose representative se-
quence is most similar to it. The greedy set-cover algorithm
with sequence reassignment gave best results and is there-
fore used in the final clustering step. The three-step cluster-
ing took 5 days on 10 nodes with two Intel Xeon E5-2640
v3 CPUs and 128GB main memory each.

Updating Uniclust. We will update the Uniclust databases
every two months following the new UniProt release. To
keep the cluster identifiers stable between updates, we do
not recluster from scratch but instead update the clustering
incrementally, add new sequences to existing clusters, create
new clusters, and remove deprecated sequences (14). We em-
ploy the updating workflow ‘mmseqs clusterupdate’ in the
MMseqs2 package for that purpose, which has the added
advantage of running in linear time instead of quadratic in
the number of sequences. To avoid excessive computational
demands, we recompute the MSAs and sequence annota-
tions only during the reclustering step once per year and
for major UniProt releases.

Consensus sequences and representative sequences. We pro-
vide two FASTA-formatted files for each of the Uniclust
databases (see section Files for Download). One contains
the representative sequences and the other the consensus se-
quences of each cluster. Consensus sequences are computed
by running ‘mmseqs result2profile’. The headers of the con-
sensus sequence summarize the annotations of the cluster’s
member sequences with the top five non-redundant descrip-
tions, giving precedence to Swiss-Prot over TTEMBL anno-
tations and a low rank to descriptions containing hypothet-
ical, unknown etc.

Uniboost MSAs

For many applications such as secondary structure predic-
tion, more diverse MSAs produce more accurate results.
Due to the stringent sequence length overlap criterion that
ensures functional homogeneity of the Uniclust30 clusters,
they contain only 6 sequences on average. We therefore
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enrich the Uniclust30 MSAs with local sequence matches
to boost their diversity. We add local alignment matches
through highly sensitive iterative profile-sequence homol-
ogy searches using four iterations of MMseqs2 through the
database of Uniclust30 consensus sequences.

The resulting MSAs are filtered to adjust the diversity: Se-
quences with a BLOSUMG62 score per aligned residue to the
consensus sequence of less than 0.0, 0.5 and 1.1 are removed
from the MSAs of the Uniboost10, Uniboost20, and Uni-
boost30 databases, respectively. These values were heuristi-
cally found to correspond to 10%, 20% and 30% sequence
identity.

Deep domain annotations

We first annotate Uniclust30 MSAs with matches to Pfam-
A, SCOP domains, and to the PDB structure database,
using our remote homology detection software HHblits,
which is based on pairwise comparison of profile hidden
Markov models (HMMs). Hence, we compute HMMs for
Uniclust30 clusters from the corresponding Uniboost10
MSAs and search the Pfam-A, SCOP, and pdb70 databases
of the HH-suite (16). These profile HMM databases are au-
tomatically kept up to date by our HH-suite server (e.g.
weekly for the PDB).

To avoid multiple annotations of a region with matches
to the same database, the pipeline processes matches in the
order of increasing E-value. It accepts matches as annota-
tion if their E-value is <0.01 and the database match over-
laps by <10% of its aligned residues with already annotated
regions.

The pipeline annotates UniProt sequences by transfer-
ring annotations of Uniclust30 MSAs to their member
sequences. We need to ensure that the annotation refers
to a region of the member sequence that is homologous
to the annotated consensus sequence of the cluster. We
therefore only transfer the cluster annotation to the mem-
ber sequence if the E-value for the subalignment Eg,p,; 1S
less than 0.01: Egpai = Edomain + K * length_consensus
s < (0.01. Here Egomain 1S the HHblits E-value of the
domain match, sgpayi 1s the BLOSUMG62 score of the pair-
wise subalignment between the consensus sequence and
the member sequence overlapping the database match, and
the term including sgupa; 1S an E-value computed with the
Karlin-Altschul statistic (17).

Webserver

To investigate specific clusters and get familiar with the
information contained in the Uniclust and Uniboost
databases, we have set up a web server that offers interac-
tive features using modern web standards and framework
such as the D3.js visualization toolkit (18).

The server can perform a full-text search for keywords
and sequence identifiers of over a hundred biological
databases linked to UniProt entries. Searches will give a list
of clusters as result, each linking to a cluster page.

The cluster page shows (Figure 1): (i) an interactive BioJS
alignment viewer (19), which displays our Pfam, SCOP, and
PDB annotations as colored bars on top; (ii) an expand-
able taxonomic tree (20) of the species represented in the
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Figure 1. Visualization of a cluster with the multiple sequence alignment
including domain annotations, the taxonomic tree for the species of the
cluster’s member sequences, domain annotations, summary of sequence
annotation keywords, and protein evidence values.



cluster, in which the user can select sequences in the align-
ment viewer above; (iii) a list of annotations with links to the
matched PDB, SCOP and Pfam entries; (iv) keywords oc-
curring most frequently in the annotations; (v) a summary
of protein evidence codes. Once a cluster is accessed, the
URL will be stable and permanently available.

In the example of Figure 1, the keyword summary indi-
cates that many member sequence are annotated as zinc fin-
gers involved in transcription regulation. By following the
links of the Pfam and SCOP domains they are revealed to
be zinc finger domains.

Cluster evaluation

In order to compare the functional homogeneity of the se-
quences within the same cluster, we developed scores that
assess the consistency of Gene Ontology terms, keyword an-
notations, and protein names within the clusters. For each
of these three annotation types, we defined a ‘worst’ and
a ‘mean’ annotation consistency score. These are, respec-
tively, the minimum and the mean of all pairwise annota-
tion similarities between the representative sequence and
any other sequence in the cluster. (We checked that the same
results are obtained if we compare with a randomly picked
sequence per cluster instead of the representative one.) This
gives us 2 x 3 scores. We also compute the average score
over the three annotation types (Figure 2B).

We now explain how the evaluation procedure computes
the annotation similarities between two sequences for the
three annotation types. Since there are often several Gene
Ontology and keyword annotations per protein, we need
similarity scores that compare the lists of annotations of
two proteins.

Gene Ontology score. The Gene Ontology (21) is a widely
used system to describe the functions of genes. It consists of
three parts, to classify biological processes, cellular compo-
nents in which a protein occurs, and their molecular func-
tions. For each of these three categories, the GO annota-
tions are organised into a hierarchical, multi-branch tree.
The similarity between two Gene Ontology terms ¢ and b is
computed as proposed in (22): sim(a, b) = 21log P(LCA(a,
b))/(log P(a) + log P(b)), where P(a) is the probability of a
protein to be annotated with « and LCA(a, b) (LCA for Last
Common Ancestor) is the most specific annotation node in
the ontology tree that contains both @ and b as child nodes.

Many proteins have multiple GO-term annotations. To
obtain a GO annotation similarity value sim(x, y) be-
tween two proteins x and y with lists of GO annotations
A(x) and A(y), we follow (23) and define the similarity
between an annotation a of one protein with the anno-
tation A, of another, sim(a, 4,) := max {sim(a, b): b €
A,} and using it, we define the annotation similarity be-
tween proteins x and y: sim(x, y) = (3, sim(a, 4,) +
D be 4, sim( Ay, b))/(| Ax| + | 4,]). Note that this similarity
takes values between 0 and 1 and equals 1 if and only if 4,
=4,.

Keyword score.  Most keywords with which UniProt pro-
teins are annotated were originally defined manually by
database curators. They are automatically transferred to
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Table 1. Statistics of Uniclust databases

Average cluster

Database Clusters Singletons size
Uniclust90 309M 23.8M 2.0(5.4)
Uniclust50 13.5M 9.6 M 4.6(13.4)
Uniclust30 9.7M 7.0 M 6.3(19.8)

Average cluster sizes are for all clusters and, in parentheses, for non-
singleton clusters.

homologous proteins according to various rules developed
within UniProt (1). The keyword annotation similarity be-
tween two proteins x, y with keyword lists K, and K|, is de-
fined in the exact same way as the GO annotation similar-
ity while defining sim(a, b) = I(a = b), with indicator func-
tion /( - ). This yields sim(x, y) = 2IK,NK,|/(IK,| + IK,l).
The keywords in the UniProt knowledge base describe func-
tional features in categories such as molecular function, do-
main, biological process, ligand and cellular component.
We ignore keyword categories technical term and coding
sequence diversity, and keywords provided by the UniProt
automatic annotation team that do not describe biological
functions.

Protein name score. 'We compute the Levenshtein string
edit distance between the protein name from the ‘recom-
mended name’ section and normalise by the length of the
longer protein name to get a similarity between 0 and 1. The
calculation ignores protein name entries starting with the
words uncharacterized, putative, potential, probable, inac-
tive, likely, and unknown. Additionally, we remove the un-
informative word ‘protein’ from the names.

RESULTS AND DISCUSSION
Statistics

Table 1 shows statistics for the release 2016_03 of the Uni-
clust databases, which is based on the UniProt 2016_03 with
61 522 041 sequences of 325 amino acids average length.

Clustering quality

To assess the functional homogeneity of the clusters we
evaluated the mean and worst sequence identities over all
clusters as measures of cluster compactness. We computed
those through Clustal Omega distance matrices by running
‘clustalo —distmat-out=distance-matrix —percent-id —full —
full-iter’ on all clusters. If a cluster contains more than ten
sequences we sample ten random sequences for the distance
matrix. Figure 2A shows these mean and worst cluster com-
pactness values. Despite the UniRef using sequence identity
and Uniclust using score-per-aligned-residue pair as simi-
larity criterion during clustering, the Uniclust clusters have
higher mean and minimum sequence identities.
Additionally to the cluster compactness we computed the
annotation consistency for all clusters with respect to the
Gene Ontology annotation of member sequences, the key-
word consistency and the protein name consistency of each
cluster’s member sequences (Materials and Methods). For
each annotation type we analysed the worst and the average
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Figure 2. (A) Sequence identities averaged over all clusters of Uniclust30, Uniclust50, Uniclust90, UniRef50 and UniRef90. We compute the mean and
worst sequence identity between all possible pairs of sequences in a cluster. If a cluster contains more than ten sequences we sample ten sequences to compute
the sequence identities. (B) Annotation consistency scores averaged over all clusters of Uniclust30, Uniclust50, Uniclust90, UniRef50 and UniRef90. We
compute the mean and worst annotation consistency between the representative sequence and all other cluster members for Gene Ontology annotations
(top-left), protein names (top-right) keywords (bottom-left), and the average of the former three (bottom-right). (C) Total Pfam annotation count difference
between Uniclust and UniProt. (D) Comparison of the fraction of proteins in ten model organisms with Pfam annotations in Uniclust and in UniProt.

annotation similarity between the reference sequence and
the other cluster members. This analysis was performed on
the Uniclust 2016_03 and UniRef 2016_03 releases based on
the same version of UniProt with N = 61 522 041 sequences
of 325 amino acids average length.

The y-axis in Figure 2B shows the consistency scores av-
eraged over all clusters versus the number of clusters for
Uniclust30, Uniclust50, Uniclust90 (red, left to right) and
UniRef50, and Uniref90 (blue, left to right). Unsurprisingly,
the lower the sequence identity threshold and the deeper the
clustering, the fewer clusters are produced and the lower the
annotation consistency scores get.

The mean scores of all annotation types show that the an-
notation consistencies of Uniclust90 and Uniclust50 clus-
ters are markedly superior on average than to those of the
corresponding UniRef databases.

The ‘worst’ annotation similarity per cluster is sensitive
to the inclusion of even very few bad, functionally divergent
sequences in the clusters. These ‘worst’ consistency scores
are still quite high even for the Uniclust30, showing that the
clustering produces highly pure clusters.

Note that an annotation similarity <1 between two se-
quences does not exclude the two sequences to have identi-
cal molecular functions but could simply be a consequence
of one of the sequences being better annotated than the
other. In this light, the cluster consistency scores are quite
satisfactory. On the other hand, though, it is clear that many
automatic annotations have been transferred on the basis
of sequence similarity, which means that functional homo-
geneity might also be overestimated. However, such effects

affect all clusterings in the same way and should there-
fore not invalidate the benchmark comparison. We further
discuss in the supplementary material the evaluation us-
ing only GO EXP_F annotations, whose sparsity leads to
a weak evaluation of the cluster consistencies.

Annotation depth

Figure 2C compares the number of annotations of Uniclust
and UniProt. Uniclust sequences contain 70 290 625 Pfam
annotations, whereas UniProt sequences are annotated with
59 918 684 Pfam domains. We analysed the overlap of Uni-
clust and Pfam annotations by counting how many of the
overlapping Uniclust and UniProt Pfam domain annota-
tions belonged to the same Pfam family clan. On a clan level
Uniclust and UniProt share 53 174 656 common annota-
tions, while Uniclust contains 17 115 969 sequence annota-
tions not shared by UniProt, and UniProt sequences have 6
744 028 annotations not present in Uniclust sequences.

This greater annotation depth of Uniclust is reflected in
the fraction of genes with at least one Pfam domain annota-
tion in the proteomes of various model organisms (Figure
2D). For every model organism except for Saccharomyces
cerevisiae, Uniclust can annotate a higher percentage of the
proteome.

Availability of data

In the following we wuse the generic form uni-
clust##_yyyy mm.tar.gz as placeholders for files such
as uniclust30_2016_03.tar.gz. All downloads are available



under a Creative Commons Attribution-ShareAlike 4.0
International license. We provide the following gzipped tar
files for download:

e uniclust##_yyyy mm.tar.gz: This archive contains three
files, which will be updated every two months:

— uniclust##_yyyy_mm_seed.fasta: representative (=seced)

sequences of every cluster in FASTA format

— uniclust##_yyyy_mm_consensus.fasta:  consensus  se-
quences of every cluster in FASTA. The sequence
header starts with the Uniclust cluster identifier uc##-
yymm-(number), the UniProt accession code of the
representative sequence, the size of the cluster, the up to
five best functional annotations from cluster members,
and UniProt identifiers of all cluster members.

— uniclust##_yyyy_mm_cluster_mapping.tsv: tab-separated
list with two columns of UniProt accession codes, the
first for the representative sequence of the cluster, and
the second for the member sequence.

o uniboost##_yyyy _mm.tar.gz: Uniboost database files in
compressed A3M alignment format, with additional sup-
port files for HH-suite version 3.

e uniclust30_yyyy_mm_hhsuite.tar.gz: archive containing
Uniclust multiple sequence alignments for all clusters
in a3m format, generated with Clustal Omega (24), and
additional support files for use with legacy HH-suite
version 2 and current version 3.

e uniclust_yyyy_mm_annotation.tar.gz: archive containing
three files with Pfam, SCOP, and PDB annotations, each
formatted as tab-separated lists with nine columns: (1,2)
identifiers for query and target, (3-5, 6-8) domain start
and end-position and total sequence length for both
UniProt and database sequence, (9) HHblits E-value.

CONCLUSION AND OUTLOOK

The Uniclust databases provide functionally homogeneous
clusters of sequences at three clustering depths (90%,
50% and 30% sequence identity), sets of representative se-
quences, MSAs of clusters, and annotations of all sequences
with Pfam, SCOP, and PDB matches. The Uniclust and
Uniboost MSAs are also offered as databases for HHblits,
the most sensitive method for remote protein homology
detection, and the provision of regular updates to these
databases resolves a sore deficiency of HHblits, which was
limited by very irregular and rare database updates. The
MSAs in Uniboost might also prove to be a useful re-
source for (deep) machine-learning applications, which ben-
efit from training on massive amounts of labeled and anno-
tated sequence profiles.

The clustering with our MMseqs2 software currently
takes around five days on 10 x 16 cores, which is sustainable
for the next five to ten years due to the near-ideal scalabil-
ity of MMseqs2. (The Soding lab’s cluster has 640 cores at
this time.) But we are also actively developing both MM-
seqs2 and HHblits to achieve even higher speeds and sen-
sitivities. We expect considerable improvements in the near
future in the sensitivity with which we will detect and anno-
tate structural domains in Uniclust/UniProtKB sequences
using HHblits. Similarly, extending MMseqs2 to profile-
profile searches will improve the sensitivity for building the
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Uniboost MSAs, which again will impact the sensitivity of
the domain annotations.

The Uniclust server facilitates profiting from the Uniclust
databases and deep HHblits domain annotations. We hope
that they will become a widely used resource for protein se-
quence analysis.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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